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Automated Aggregate Shape Analysis
and Rutting/Stripping Performance

J. D. Wilson and L. D. Klotz

Abstract

Fine aggregate shape has been identified as a factor in determining asphalt pavement rutting
susceptibility. In an effort improve test methods for measuring aggregate shape
characteristics, a video-based, computer-controlled imaging system was developed.
Individual aggregate particles were characterized by shape attributes. A neural network
classifier used these attributes to calculate a single number classification index that relates to
expected performance. Expert judges were used to train the neural net classifier by scoring a
set of particle outlines. Discrepancies in the expert’s scores indicate that considerable
differences still exist in the concept of “angularity”. The neural network performed better
than the experts and was compared to the NAA Method A test for measuring shape. Above
43% voids, the NAA test appeared to lose accuracy, suggesting Superpave fine aggregate
angularity criteria may need reconsideration. .

Project Goal-

Develop a means of measuring aggregate angularity using off-the-shelf video and computer
technology.

Introduction

In 1880 Sorby (/) developed a method for classifying sand into five groups based on shape
and surface characteristics. Today, it is desirable to use video and computer technology to
rapidly accomplish direct classification and quantification of aggregate shape to aid in hot
mix asphalt (HMA) designs. In 1991, Barksdale et al. (2) described a method for
quantifying aggregate using a digitizing table and computer. At the same time, Landis (3)
began the first studies at our institution for aggregate analysis using particle outlines obtained
by video imaging. More recently, Li ef al. (4) used the concept of fractal dimension; and,
Wilson and Klotz (5, 6) used the Hough transform for aggregate quantification using
outlines. .

Hawkins (7) and Beddow (8) each published an excellent text reviewing the history and
methods of particle shape analysis. Hawkins summarizes the views of Meloy and Clark (p
4,5), two researchers that spent fifteen years developing mathematical descriptions of
particle outlines, as follows: “one must use intelligence and experience to work out a
relevant shape characteristic and then find a method to measure it”. Drescher et al. (9) and
Winkelmolen (70) suggested that single particles should be characterized free of
presupposition and that relevant parameters be selected by cluster and discriminance |



algorithms. Our research approach follows this paradigm. First, it was assumed that
experienced pavement engineers could differentiate between the outlines of “rounded” and
“angular” aggregate in a monotonic fashion. Then an algorithm was developed to match the
expert judgement on a particle-by-particle basis. In this way, the judgement of the panel
defined angularity which, in this context, translates into anticipated performance in an
asphalt mix. Parameters thought to be important in assessing aggregate performance were
computed for each outline; and, using these parameters as input data, a neural network was
used to estimate the score provided by the experts.

We demonstrate that with a neural network, performance comparable to human judgment
can be obtained. Further, the NAA Method A test and a limited set of rutting data are
compared with the results of the analysis by the neural network.

Materials and Methods
A. Previous Work

Prior to this effort, we had reported the development of several parameter extraction
algorithms and an automated video imaging system suitable for collecting images of particles
as small as +100 seive. (5, 6) Two useful algorithms are based on the Hough transform, a
mathematical formulation for identifying straight edges in digital images. The S; index was
developed to identify an outline with one or more long straight edge(s). By definition, the S;
index was scaled to vary between 0.0 and 1.0 with a value greater than 0.6 indicating a high
probability of angularity. Values below 0.6 indicate a lack of angularity, but not necessarily
roundness. A second index, the R index, was developed to provide a test for roundness and
was also defined to lie between 0.0 and 1.0. An R index value greater than 0.75 indicates a
well-rounded outline, while a value below 0.75 is undefined. Both the S; index and the R
index were designed to be used in a pass/fail fashion to count the number of angular particles
and the number of rounded particles in a sample. Neither the S; index nor the R index was
designed to give a smooth measure of angularity all the way from well-rounded to angular.

In addition to S; index and the R index, algorithms to compute various geometric parameters
had also been developed. These include perimeter, area, minimum and maximum caliper
dimension, and elongation (i.e., defined as 1/aspect ratio and called the E index).

B. Data Collection

Thirty-three different samples of aggregate were obtained for study. These samples represent
poor to excellent quality material for asphalt pavement construction as determined by
experience and other tests for angularity. Trained personnel tested all samples by NAA
Method A. Each sample was seperated by size using standard sieving procedures. For shape
testing, two size ranges were used. Size Range #1 was all material that passed sieve size #4
and was retained on sieve size #16 (4.75 mm to 1.18 mm). Size Range #2 was all material



that passed sieve size #16 and was retained on sieve size #50 (1.18 mm to 0.30 mm).
Multiple specimens of most samples were measured. Both size range specimens were not
available for some samples and some samples had multiple specimens, taken from different
sites. '

The video system was calibrated for scale and aspect ratio. Then several hundred particles
were manually spread on a glass plate mounted to an XY table. The particles were
illuminated from below to provide high contrast between background and sample,
simplifying the process of extracting the outline of each particle. The XY table was pre-
programmed to move in small increments between each captured video image until the entire
sample plate was examined. The XY table coordinates and the extents and position of every
outline in every image provided the means of rejecting multiple copies of the same particle.
Every outline from every sample was stored on hard disk for later analysis. Several hundred
outlines were stored for each sample.

C. Expert Ranking

Keeping to the project paradigm, an expert panel defined angularity (or perfomance). To
accomplish this, a panel of six experts judged the same 135 outlines placed 45 to a page in
random order. The outlines were selected from rounded, subrounded, subangular, and
angular material and printed by laser printer. Each expert was instructed to mark each
outline from 0 (rounded) to 10 (angular) and return the sheets for compilation. The scores
assigned to each outline were averaged on an outline-by-outline basis and then divided by ten
so that the scores ranged form 0.0 to 1.0. This set of 135 scored images became the standard
used to develop algorithms. In addition to the experts, three non-experts were given the
same task. Finally, all data sets were standardized (scaled to have the same mean and
standard deviation). The expert scores range from 0.0 to 1.0 and can be divided into four
ranges for classification purposes:

Rounded 0.0 to 0.25
Sub-Rounded 025 to 0.50
Sub-Angular 050 to 0.75
Angular 075 to 1.00

D. T Index

An algorithm was developed to provide some measure of coarse texture. See

Figure 1. The T index is a straightforward calculation. Consider the outline to be a solid
shape with area (A,) and the area defined by a rubber band stretched around the solid outline.
The area defined by the rubber band is (Ay) and is refered to as the convex hull. Then the T
index is given by:

T=1-(—’Z—§) | (M



The T index approaches zero for a smooth, rounded object and increases as the surface
becomes irregular and is, in a sense, a measure of texture on a macroscopic level.

...........

Particle _

o

Outline

Figure 1. Tllustration of convex hull

E. Harmonic Components of S(6) Function

Refer to Figure 2 in which the Hough transform of a triangular outline is displayed. The
projection of the intensity of the Hough transform, shown directly over the Hough transform,
is the S(0) function. Figure 3 shows an expanded view. Note that for each long straight edge
on the outline of the triangle there is a peak in the S(6) function of proportional height. The
S(0) function is very descriptive of the original outline and is almost identical to the slope
density function used by Li et al (4). In that work the fractal dimension of the slope density
function was used to discriminate different shapes. The Fast Fourier transform (FFT) of the
S(0) function (Figure 4) was used to provide improved shape discrimination. Harmonic
components 2 through 16 are normalized and used as inputs to the neural network because
they provide information not contained in the other measured parameters or indices.
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Figure 2. Triangle test shape (left) and its Hough Transform (right).

Figure 3. The S(6) function.

FFT(s)

Figure 4. Harmonic components of S(8) function.

F. Neural Network and K Index

A neural network was developed to combine the various indices and geometric parameters
into a single, monotonic, estimate of angularity (or anticipated performance) of each particle
as defined by the expert panel’s scored examples. In this application, the neural network is a
non-linear transformation of all the available information (indices and harmonic



components) into a single linear estimate. Neural networks are not programmed, they are
trained by example. Training is accompished by applying data from an outline to the inputs
of the neural network and comparing the computed output with the desired results. When
there is difference between the network output and the desired output, weighting factors
within the network are adjusted to move the output toward the desired value. This process is
repeated thousands of times using several hundred examples. Normally, the available
examples are divided into a training set and a test set, and the network is trained with the
training set and tested for accuracy using the test set. All 135 expert-scored examples were
saved for the test set and a new set of data for training was developed. First, all 135 expert
examples were sorted by score and reprinted in sequence as a reference template. Then
several hundred new outlines were assigned a score by finding the closest match among the
135 scored examples and giving the new outline the same score. The new data set became
the training set for the neural network. Although this process seems highly subjective, it
worked quite well.

For a given sample, several hundred outlines are recorded and analyzed. The K number is
defined as the output of the neural network. When plotted as a cumulative distribution, the
K number at the 50th percentile is the K5, index.

Results and Discussion
A, Test Set Data

Linear regression was computed for each expert, each non-expert, the T index and the K
index to determine the correlation with the averaged expert values assigned to the test set
outlines. Further, to remove the bias of having their own estimates contributing to the
standard, the linear regression was computed for each expert compared to the average
assigned by the other five experts. The 1 correlations are shown in Table 1. There was little
or no correlation between the S;, R, and E indicesand the expert scores. It is important to
note that the S; and R indicesare meaningful only within certain ranges and are not
necessarily linear, therefore correlation over the whole test set was not expected.



Table 1. Linear Correlations

r, All Six r°, Other Five
(unbiased)
Expert #1 0.7468 0.6290
Expert #2 0.6593 0.5217
Expert #3 0.7709 0.6671
Expert #4 0.6237 0.4804
Expert #5 0.5789 0.4244
Expert #6 0.7145 0.5917
Non-Expert #1 0.5983 -
Non-Expert #2 0.6476 -
Non-Expert #3 0.4037 -
T Index 0.5169 -
(coarse texture)
K Index 0.7238 -
(neural network)

It is clear from the regression coefficients that the experts do not completely agree in their
judgement concerning angularity. Further, the unbiased judgement of the experts was only
slightly better than the non-experts. This should not be taken to mean that each expert does
not recognize angular shapes, but that each expert had a different concept of angularity. The
neural network correlated reasonably well with the experts and outperformed the expert’s
unbiased judgments. However, the neural network was trained against a predefined standard,
which was visually derived from a researcher’s subjective decisions while looking at the
outlines and scores in the test set. This demonstrates that there can be consistancy in visual
judgements if a well-established standard is used. Further, the process of parameter
extraction combined with interpretation by a neural network performed better than the
human judges in absence of a standard. Non-expert #2 working alone produced the data set
used to train the neural network, yet the neural network outperformed that individual.

The experts agreed on certain classes of shape. Figure 5 is a scatter diagram of the standard
deviation plotted against the mean for each outline in the test set. For rounded outlines (0.0
to 0.25) the standard deviations are smaller, indicating better agreement in that range. This
is reported in the literature - a circle is easy to recognize. Experts tend to agree on highly
angular outlines as well. The greatest disagreement occurs at the boundry between sub-
round and sub-angular. A difference of 0.25 would indicate a complete class difference, for
example a sub-round object classified as sub-angular.



Expert Standard Deviation

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

] - 1 | -
.,v n n .l .
;~ l ’ ‘ » |}
L L5
N ..l ‘: .rE. l W -
m Ey - "
L I ) -
'...‘“ B ‘- .l le ™
. : _ ' .=. =
0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9

Expert Average

Figure 5. Standard deviation vs average for each outline scored by the experts.

Of all of the extracted parameters and indices, the T index had the highest correlation

(* = 0.5169) with the expert judgement (Figure 6). This was an unexpected result since
most of the previous research had discribed angularity in terms of straight edges or shape
classes such as “cubical” or “triangular”. In our view, this explains the expert
disagreements; some hold coarse texture in higher regard than others.
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The response of the neural network to the test set is shown in Figure 7. The correlation was
1? = 0.7238 for the data shown. Some of the computed K numbers exceeded 1.0. If limited
to a maximum of 1.0, the correlation improves slightly to 1 =0.7322. Also, 68.7% of the K
values was within 0.125 of the expert ranking or one half of a class size as defined above.
Since the neural network performed better than the T index, one must conclude that
significant information is carried in the other indices and harmonic components.
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Figure 7. Neural network output compared to the Experts

B. Aggregate Distributions

The K number is a shape descriptor produced by the neural network for individual particles.
The distributions of three samples are shown in Figure 8. Samples designated as 09A and
32A represent examples from the extremes well rounded to angular. In all of the samples
tested, the material described as “angular” had significant subangular and subround content

but very little rounded content.
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Figure 8. K number distributions of three aggregate samples: Rounded(33A)
Subangular Natural (09A), and Angular Manufactured (32A)

The 50th percentiles of the cumulative distributions (Kso index) were convenient for
comparing samples. Figure 9 shows four different sands with multiple measurements on
each. In each case several hundred outlines were taken, then the sample plate was swept
clean and fresh material from the same source was placed on the sample plate and imaged
again. The data in Figure 9 demonstrate how well the measurements can be repeated. The
Ks, values of the distributions in Figure 9 are shown in Table 2.

Cumulative Distribution

0.0 0.1 0.2 0.3 04 0.5 06 07 0.8 0.8 1.0
K Number

Sample: * 32 @ 33 #298 *258B

Figure 9. Multiple cumulative K number distributions of four samples.



Table 2. Kso Values for Multiple Measurements

Sample Kso

1 32 .64
2 32 .64
3 32 .61
4 32 .60
5 32 .63
1 33 .18
2 33 17
3 33 17
4 33 A7
1 29B .66
2 29B .66
3 29B .66
1 25B 47
25B 48

3 25B 46

C. NAA Percent Voids

The NAA percent voids values were available for thirty one samples. The comparison is
presented in Figure 10. Although there are two outliers, a general correlation can be seen
between the two methods below NAA percent voids of 46%. Sample #26 was problematic in
" that the sample had small particles that attached to larger material giving the appearance of
texture. That data point should be ignored, but others should not. Sample #31 is river sand
and is clearly rounded. Further, the NAA percent voids measurement was repeated several
times. In this case, the K5, value is much more believable than the NAA percent voids
measurement. Some of the most angular material measured by our method had NAA percent
voids of about 45%, the minimum criteria for Superpave heavy traffic HMA designs. What
correlation there may be above 47% NAA percent voids is unclear.
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D. Rutting Data

Six samples that had been used in an earlier study also had rutting data available. The data is
presented in Figure 11. Although there were not enough data points to draw a conclusion,
the general trend appears to be correct.
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Conclusions

Using a panel of experts to define angularity on a particle-by-particle basis provided insight
into the meaning of angularity. The term angular implies high performance, but apparently
coarse texture is an important issue for many experts and must be considered in future work.
It is also seen that angularity can be defined by example rather than by explicit mathematical
formulation and that angularity so defined can be implemented by means of a neural
network. One can convienently change the definition of angularity in arbitrary ways and
observe which definition best predicts outcome thereby discovering what shapes or
combinations actually control field results.

The neural network K values correlated well with the expert values (** =0.7238). It should
be possible to improve correlation by eliminating the intermediate step of creating a training
set. Only 135 outlines scored by expert were available in this study. Therefore, we were
forced to create our own training set, an imperfect example of the original. The process of
creating the second data set likely introduced error. A larger data set provided by experts
should eliminate the intermediate step and improve performance.

Recommendations

Characterizing aggregate shape by imaging is feasible and flexible. Since tests for aggregate
angularity should indicate expected performance in HMA, further development of the
technique should focus on predicting rate of rutting from direct field measurements. These
studies could also help evaluate other common tests (ie. loaded wheel tests, shear tests, etc)
for their accuracy.

Above 43%, the NAA Method A test appears to lose accuracy. Superpave’s specification of
45% voids for high-traffic HMA designs may be too high, and should be reconsidered.
Below 43%, the NAA test appears to identify rounded aggregates. The single outlier may
indicate that other tests should confirm NAA test results when warranted.

While the algorithms presented appear to work well, comparison with other techniques, such
as fractal dimension and Fourier descriptors, is recommended to determine the most rapid
and accurate technique for quantifying shape. Using neural network classifiersto
characterize aggregate shape with a single number appears to be a good approach. Inthe
absence of rigorous mathematical models that relate particle shape to HMA performance, the
empirical nature of using neural networks is appropriate.

Disclaimer

The contents of this report reflect the views of the authors, who are responsible for the facts
and accuracy of the information presented herein. This document is disseminated under the
sponsorship of the Department of Transportation, University Transportation Centers



Program, in the interest of information exchange. The U.S. Government assumes no liability
for the contents or use thereof.
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